Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
PLoS One ; 18(3): e0280823, 2023.
Article in English | MEDLINE | ID: covidwho-2269919

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has emphasized the importance and challenges of correctly interpreting antibody test results. Identification of positive and negative samples requires a classification strategy with low error rates, which is hard to achieve when the corresponding measurement values overlap. Additional uncertainty arises when classification schemes fail to account for complicated structure in data. We address these problems through a mathematical framework that combines high dimensional data modeling and optimal decision theory. Specifically, we show that appropriately increasing the dimension of data better separates positive and negative populations and reveals nuanced structure that can be described in terms of mathematical models. We combine these models with optimal decision theory to yield a classification scheme that better separates positive and negative samples relative to traditional methods such as confidence intervals (CIs) and receiver operating characteristics. We validate the usefulness of this approach in the context of a multiplex salivary SARS-CoV-2 immunoglobulin G assay dataset. This example illustrates how our analysis: (i) improves the assay accuracy, (e.g. lowers classification errors by up to 42% compared to CI methods); (ii) reduces the number of indeterminate samples when an inconclusive class is permissible, (e.g. by 40% compared to the original analysis of the example multiplex dataset) and (iii) decreases the number of antigens needed to classify samples. Our work showcases the power of mathematical modeling in diagnostic classification and highlights a method that can be adopted broadly in public health and clinical settings.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , Saliva , COVID-19 Testing , Diagnostic Techniques and Procedures , Antibodies, Viral , Sensitivity and Specificity
2.
Math Biosci ; 358: 108982, 2023 04.
Article in English | MEDLINE | ID: covidwho-2242906

ABSTRACT

An accurate multiclass classification strategy is crucial to interpreting antibody tests. However, traditional methods based on confidence intervals or receiver operating characteristics lack clear extensions to settings with more than two classes. We address this problem by developing a multiclass classification based on probabilistic modeling and optimal decision theory that minimizes the convex combination of false classification rates. The classification process is challenging when the relative fraction of the population in each class, or generalized prevalence, is unknown. Thus, we also develop a method for estimating the generalized prevalence of test data that is independent of classification of the test data. We validate our approach on serological data with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) naïve, previously infected, and vaccinated classes. Synthetic data are used to demonstrate that (i) prevalence estimates are unbiased and converge to true values and (ii) our procedure applies to arbitrary measurement dimensions. In contrast to the binary problem, the multiclass setting offers wide-reaching utility as the most general framework and provides new insight into prevalence estimation best practices.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , COVID-19/epidemiology , Prevalence , COVID-19 Testing
3.
J Theor Biol ; 559: 111375, 2023 02 21.
Article in English | MEDLINE | ID: covidwho-2150215

ABSTRACT

Serology testing can identify past infection by quantifying the immune response of an infected individual providing important public health guidance. Individual immune responses are time-dependent, which is reflected in antibody measurements. Moreover, the probability of obtaining a particular measurement from a random sample changes due to changing prevalence (i.e., seroprevalence, or fraction of individuals exhibiting an immune response) of the disease in the population. Taking into account these personal and population-level effects, we develop a mathematical model that suggests a natural adaptive scheme for estimating prevalence as a function of time. We then combine the estimated prevalence with optimal decision theory to develop a time-dependent probabilistic classification scheme that minimizes the error associated with classifying a value as positive (history of infection) or negative (no such history) on a given day since the start of the pandemic. We validate this analysis by using a combination of real-world and synthetic SARS-CoV-2 data and discuss the type of longitudinal studies needed to execute this scheme in real-world settings.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , Prevalence , Seroepidemiologic Studies , COVID-19 Testing , Antibodies, Viral
4.
Math Biosci ; 351: 108858, 2022 09.
Article in English | MEDLINE | ID: covidwho-1885984

ABSTRACT

In diagnostic testing, establishing an indeterminate class is an effective way to identify samples that cannot be accurately classified. However, such approaches also make testing less efficient and must be balanced against overall assay performance. We address this problem by reformulating data classification in terms of a constrained optimization problem that (i) minimizes the probability of labeling samples as indeterminate while (ii) ensuring that the remaining ones are classified with an average target accuracy X. We show that the solution to this problem is expressed in terms of a bathtub-type principle that holds out those samples with the lowest local accuracy up to an X-dependent threshold. To illustrate the usefulness of this analysis, we apply it to a multiplex, saliva-based SARS-CoV-2 antibody assay and demonstrate up to a 30 % reduction in the number of indeterminate samples relative to more traditional approaches.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/diagnosis , COVID-19 Testing , Decision Theory , Humans , Saliva
5.
Math Med Biol ; 38(3): 396-416, 2021 08 15.
Article in English | MEDLINE | ID: covidwho-1356687

ABSTRACT

Formulating accurate and robust classification strategies is a key challenge of developing diagnostic and antibody tests. Methods that do not explicitly account for disease prevalence and uncertainty therein can lead to significant classification errors. We present a novel method that leverages optimal decision theory to address this problem. As a preliminary step, we develop an analysis that uses an assumed prevalence and conditional probability models of diagnostic measurement outcomes to define optimal (in the sense of minimizing rates of false positives and false negatives) classification domains. Critically, we demonstrate how this strategy can be generalized to a setting in which the prevalence is unknown by either (i) defining a third class of hold-out samples that require further testing or (ii) using an adaptive algorithm to estimate prevalence prior to defining classification domains. We also provide examples for a recently published SARS-CoV-2 serology test and discuss how measurement uncertainty (e.g. associated with instrumentation) can be incorporated into the analysis. We find that our new strategy decreases classification error by up to a decade relative to more traditional methods based on confidence intervals. Moreover, it establishes a theoretical foundation for generalizing techniques such as receiver operating characteristics by connecting them to the broader field of optimization.


Subject(s)
COVID-19 Serological Testing/statistics & numerical data , COVID-19/diagnosis , SARS-CoV-2 , Algorithms , Antibodies, Viral/blood , COVID-19/classification , COVID-19/epidemiology , COVID-19 Serological Testing/classification , Computational Biology , Data Analysis , Decision Theory , Humans , Immunoglobulin G/blood , Models, Statistical , Pandemics/statistics & numerical data , Prevalence , ROC Curve , Uncertainty
6.
Int J Mol Sci ; 22(5)2021 Mar 08.
Article in English | MEDLINE | ID: covidwho-1150749

ABSTRACT

Quantitative and robust serology assays are critical measurements underpinning global COVID-19 response to diagnostic, surveillance, and vaccine development. Here, we report a proof-of-concept approach for the development of quantitative, multiplexed flow cytometry-based serological and neutralization assays. The serology assays test the IgG and IgM against both the full-length spike antigens and the receptor binding domain (RBD) of the spike antigen. Benchmarking against an RBD-specific SARS-CoV IgG reference standard, the anti-SARS-CoV-2 RBD antibody titer was quantified in the range of 37.6 µg/mL to 31.0 ng/mL. The quantitative assays are highly specific with no correlative cross-reactivity with the spike proteins of MERS, SARS1, OC43 and HKU1 viruses. We further demonstrated good correlation between anti-RBD antibody titers and neutralizing antibody titers. The suite of serology and neutralization assays help to improve measurement confidence and are complementary and foundational for clinical and epidemiologic studies.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19 Serological Testing/standards , COVID-19/blood , COVID-19/immunology , Neutralization Tests/methods , Neutralization Tests/standards , SARS-CoV-2/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Cross Reactions , Flow Cytometry/methods , Fluorescence , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Microspheres , Receptors, Virus/chemistry , Receptors, Virus/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL